3.247 \(\int \frac {x^3 \log (c (a+\frac {b}{x^2})^p)}{d+e x} \, dx\)

Optimal. Leaf size=421 \[ -\frac {2 b^{3/2} p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{3 a^{3/2} e}-\frac {d^3 \log (d+e x) \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^4}+\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}+\frac {d^3 p \text {Li}_2\left (\frac {\sqrt {-a} (d+e x)}{\sqrt {-a} d-\sqrt {b} e}\right )}{e^4}+\frac {d^3 p \text {Li}_2\left (\frac {\sqrt {-a} (d+e x)}{\sqrt {-a} d+\sqrt {b} e}\right )}{e^4}+\frac {d^3 p \log (d+e x) \log \left (\frac {e \left (\sqrt {b}-\sqrt {-a} x\right )}{\sqrt {-a} d+\sqrt {b} e}\right )}{e^4}+\frac {d^3 p \log (d+e x) \log \left (-\frac {e \left (\sqrt {-a} x+\sqrt {b}\right )}{\sqrt {-a} d-\sqrt {b} e}\right )}{e^4}+\frac {2 \sqrt {b} d^2 p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a} e^3}-\frac {b d p \log \left (a x^2+b\right )}{2 a e^2}+\frac {2 b p x}{3 a e}-\frac {2 d^3 p \text {Li}_2\left (\frac {e x}{d}+1\right )}{e^4}-\frac {2 d^3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^4} \]

[Out]

2/3*b*p*x/a/e-2/3*b^(3/2)*p*arctan(x*a^(1/2)/b^(1/2))/a^(3/2)/e+d^2*x*ln(c*(a+b/x^2)^p)/e^3-1/2*d*x^2*ln(c*(a+
b/x^2)^p)/e^2+1/3*x^3*ln(c*(a+b/x^2)^p)/e-d^3*ln(c*(a+b/x^2)^p)*ln(e*x+d)/e^4-2*d^3*p*ln(-e*x/d)*ln(e*x+d)/e^4
-1/2*b*d*p*ln(a*x^2+b)/a/e^2+d^3*p*ln(e*x+d)*ln(-e*(x*(-a)^(1/2)+b^(1/2))/(d*(-a)^(1/2)-e*b^(1/2)))/e^4+d^3*p*
ln(e*x+d)*ln(e*(-x*(-a)^(1/2)+b^(1/2))/(d*(-a)^(1/2)+e*b^(1/2)))/e^4-2*d^3*p*polylog(2,1+e*x/d)/e^4+d^3*p*poly
log(2,(e*x+d)*(-a)^(1/2)/(d*(-a)^(1/2)-e*b^(1/2)))/e^4+d^3*p*polylog(2,(e*x+d)*(-a)^(1/2)/(d*(-a)^(1/2)+e*b^(1
/2)))/e^4+2*d^2*p*arctan(x*a^(1/2)/b^(1/2))*b^(1/2)/e^3/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.59, antiderivative size = 421, normalized size of antiderivative = 1.00, number of steps used = 25, number of rules used = 14, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {2466, 2448, 263, 205, 2455, 260, 193, 321, 2462, 2416, 2394, 2315, 2393, 2391} \[ \frac {d^3 p \text {PolyLog}\left (2,\frac {\sqrt {-a} (d+e x)}{\sqrt {-a} d-\sqrt {b} e}\right )}{e^4}+\frac {d^3 p \text {PolyLog}\left (2,\frac {\sqrt {-a} (d+e x)}{\sqrt {-a} d+\sqrt {b} e}\right )}{e^4}-\frac {2 d^3 p \text {PolyLog}\left (2,\frac {e x}{d}+1\right )}{e^4}-\frac {2 b^{3/2} p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{3 a^{3/2} e}-\frac {d^3 \log (d+e x) \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^4}+\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}+\frac {d^3 p \log (d+e x) \log \left (\frac {e \left (\sqrt {b}-\sqrt {-a} x\right )}{\sqrt {-a} d+\sqrt {b} e}\right )}{e^4}+\frac {d^3 p \log (d+e x) \log \left (-\frac {e \left (\sqrt {-a} x+\sqrt {b}\right )}{\sqrt {-a} d-\sqrt {b} e}\right )}{e^4}+\frac {2 \sqrt {b} d^2 p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a} e^3}-\frac {b d p \log \left (a x^2+b\right )}{2 a e^2}+\frac {2 b p x}{3 a e}-\frac {2 d^3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^4} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*Log[c*(a + b/x^2)^p])/(d + e*x),x]

[Out]

(2*b*p*x)/(3*a*e) + (2*Sqrt[b]*d^2*p*ArcTan[(Sqrt[a]*x)/Sqrt[b]])/(Sqrt[a]*e^3) - (2*b^(3/2)*p*ArcTan[(Sqrt[a]
*x)/Sqrt[b]])/(3*a^(3/2)*e) + (d^2*x*Log[c*(a + b/x^2)^p])/e^3 - (d*x^2*Log[c*(a + b/x^2)^p])/(2*e^2) + (x^3*L
og[c*(a + b/x^2)^p])/(3*e) - (d^3*Log[c*(a + b/x^2)^p]*Log[d + e*x])/e^4 - (2*d^3*p*Log[-((e*x)/d)]*Log[d + e*
x])/e^4 + (d^3*p*Log[(e*(Sqrt[b] - Sqrt[-a]*x))/(Sqrt[-a]*d + Sqrt[b]*e)]*Log[d + e*x])/e^4 + (d^3*p*Log[-((e*
(Sqrt[b] + Sqrt[-a]*x))/(Sqrt[-a]*d - Sqrt[b]*e))]*Log[d + e*x])/e^4 - (b*d*p*Log[b + a*x^2])/(2*a*e^2) + (d^3
*p*PolyLog[2, (Sqrt[-a]*(d + e*x))/(Sqrt[-a]*d - Sqrt[b]*e)])/e^4 + (d^3*p*PolyLog[2, (Sqrt[-a]*(d + e*x))/(Sq
rt[-a]*d + Sqrt[b]*e)])/e^4 - (2*d^3*p*PolyLog[2, 1 + (e*x)/d])/e^4

Rule 193

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b}, x] && LtQ[n, 0]
 && IntegerQ[p]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2393

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + (c*e*x)/g])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2416

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rule 2448

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)], x_Symbol] :> Simp[x*Log[c*(d + e*x^n)^p], x] - Dist[e*n*p, Int[
x^n/(d + e*x^n), x], x] /; FreeQ[{c, d, e, n, p}, x]

Rule 2455

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.)*(x_))^(m_.), x_Symbol] :> Simp[((f*x)^(m
+ 1)*(a + b*Log[c*(d + e*x^n)^p]))/(f*(m + 1)), x] - Dist[(b*e*n*p)/(f*(m + 1)), Int[(x^(n - 1)*(f*x)^(m + 1))
/(d + e*x^n), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m, -1]

Rule 2462

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[f +
 g*x]*(a + b*Log[c*(d + e*x^n)^p]))/g, x] - Dist[(b*e*n*p)/g, Int[(x^(n - 1)*Log[f + g*x])/(d + e*x^n), x], x]
 /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && RationalQ[n]

Rule 2466

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_.) + (g_.)*(x_))^(r_.), x_S
ymbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x)^r, x], x] /; FreeQ[{a, b, c, d, e,
 f, g, n, p, q}, x] && IntegerQ[m] && IntegerQ[r]

Rubi steps

\begin {align*} \int \frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{d+e x} \, dx &=\int \left (\frac {d^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^2}+\frac {x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3 (d+e x)}\right ) \, dx\\ &=\frac {d^2 \int \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \, dx}{e^3}-\frac {d^3 \int \frac {\log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{d+e x} \, dx}{e^3}-\frac {d \int x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \, dx}{e^2}+\frac {\int x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \, dx}{e}\\ &=\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \log (d+e x)}{e^4}-\frac {\left (2 b d^3 p\right ) \int \frac {\log (d+e x)}{\left (a+\frac {b}{x^2}\right ) x^3} \, dx}{e^4}+\frac {\left (2 b d^2 p\right ) \int \frac {1}{\left (a+\frac {b}{x^2}\right ) x^2} \, dx}{e^3}-\frac {(b d p) \int \frac {1}{\left (a+\frac {b}{x^2}\right ) x} \, dx}{e^2}+\frac {(2 b p) \int \frac {1}{a+\frac {b}{x^2}} \, dx}{3 e}\\ &=\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \log (d+e x)}{e^4}-\frac {\left (2 b d^3 p\right ) \int \left (\frac {\log (d+e x)}{b x}-\frac {a x \log (d+e x)}{b \left (b+a x^2\right )}\right ) \, dx}{e^4}+\frac {\left (2 b d^2 p\right ) \int \frac {1}{b+a x^2} \, dx}{e^3}-\frac {(b d p) \int \frac {x}{b+a x^2} \, dx}{e^2}+\frac {(2 b p) \int \frac {x^2}{b+a x^2} \, dx}{3 e}\\ &=\frac {2 b p x}{3 a e}+\frac {2 \sqrt {b} d^2 p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a} e^3}+\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \log (d+e x)}{e^4}-\frac {b d p \log \left (b+a x^2\right )}{2 a e^2}-\frac {\left (2 d^3 p\right ) \int \frac {\log (d+e x)}{x} \, dx}{e^4}+\frac {\left (2 a d^3 p\right ) \int \frac {x \log (d+e x)}{b+a x^2} \, dx}{e^4}-\frac {\left (2 b^2 p\right ) \int \frac {1}{b+a x^2} \, dx}{3 a e}\\ &=\frac {2 b p x}{3 a e}+\frac {2 \sqrt {b} d^2 p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a} e^3}-\frac {2 b^{3/2} p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{3 a^{3/2} e}+\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \log (d+e x)}{e^4}-\frac {2 d^3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^4}-\frac {b d p \log \left (b+a x^2\right )}{2 a e^2}+\frac {\left (2 a d^3 p\right ) \int \left (-\frac {\sqrt {-a} \log (d+e x)}{2 a \left (\sqrt {b}-\sqrt {-a} x\right )}+\frac {\sqrt {-a} \log (d+e x)}{2 a \left (\sqrt {b}+\sqrt {-a} x\right )}\right ) \, dx}{e^4}+\frac {\left (2 d^3 p\right ) \int \frac {\log \left (-\frac {e x}{d}\right )}{d+e x} \, dx}{e^3}\\ &=\frac {2 b p x}{3 a e}+\frac {2 \sqrt {b} d^2 p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a} e^3}-\frac {2 b^{3/2} p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{3 a^{3/2} e}+\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \log (d+e x)}{e^4}-\frac {2 d^3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^4}-\frac {b d p \log \left (b+a x^2\right )}{2 a e^2}-\frac {2 d^3 p \text {Li}_2\left (1+\frac {e x}{d}\right )}{e^4}-\frac {\left (\sqrt {-a} d^3 p\right ) \int \frac {\log (d+e x)}{\sqrt {b}-\sqrt {-a} x} \, dx}{e^4}+\frac {\left (\sqrt {-a} d^3 p\right ) \int \frac {\log (d+e x)}{\sqrt {b}+\sqrt {-a} x} \, dx}{e^4}\\ &=\frac {2 b p x}{3 a e}+\frac {2 \sqrt {b} d^2 p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a} e^3}-\frac {2 b^{3/2} p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{3 a^{3/2} e}+\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \log (d+e x)}{e^4}-\frac {2 d^3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^4}+\frac {d^3 p \log \left (\frac {e \left (\sqrt {b}-\sqrt {-a} x\right )}{\sqrt {-a} d+\sqrt {b} e}\right ) \log (d+e x)}{e^4}+\frac {d^3 p \log \left (-\frac {e \left (\sqrt {b}+\sqrt {-a} x\right )}{\sqrt {-a} d-\sqrt {b} e}\right ) \log (d+e x)}{e^4}-\frac {b d p \log \left (b+a x^2\right )}{2 a e^2}-\frac {2 d^3 p \text {Li}_2\left (1+\frac {e x}{d}\right )}{e^4}-\frac {\left (d^3 p\right ) \int \frac {\log \left (\frac {e \left (\sqrt {b}-\sqrt {-a} x\right )}{\sqrt {-a} d+\sqrt {b} e}\right )}{d+e x} \, dx}{e^3}-\frac {\left (d^3 p\right ) \int \frac {\log \left (\frac {e \left (\sqrt {b}+\sqrt {-a} x\right )}{-\sqrt {-a} d+\sqrt {b} e}\right )}{d+e x} \, dx}{e^3}\\ &=\frac {2 b p x}{3 a e}+\frac {2 \sqrt {b} d^2 p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a} e^3}-\frac {2 b^{3/2} p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{3 a^{3/2} e}+\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \log (d+e x)}{e^4}-\frac {2 d^3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^4}+\frac {d^3 p \log \left (\frac {e \left (\sqrt {b}-\sqrt {-a} x\right )}{\sqrt {-a} d+\sqrt {b} e}\right ) \log (d+e x)}{e^4}+\frac {d^3 p \log \left (-\frac {e \left (\sqrt {b}+\sqrt {-a} x\right )}{\sqrt {-a} d-\sqrt {b} e}\right ) \log (d+e x)}{e^4}-\frac {b d p \log \left (b+a x^2\right )}{2 a e^2}-\frac {2 d^3 p \text {Li}_2\left (1+\frac {e x}{d}\right )}{e^4}-\frac {\left (d^3 p\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-a} x}{-\sqrt {-a} d+\sqrt {b} e}\right )}{x} \, dx,x,d+e x\right )}{e^4}-\frac {\left (d^3 p\right ) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-a} x}{\sqrt {-a} d+\sqrt {b} e}\right )}{x} \, dx,x,d+e x\right )}{e^4}\\ &=\frac {2 b p x}{3 a e}+\frac {2 \sqrt {b} d^2 p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a} e^3}-\frac {2 b^{3/2} p \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{3 a^{3/2} e}+\frac {d^2 x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{e^3}-\frac {d x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{2 e^2}+\frac {x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )}{3 e}-\frac {d^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right ) \log (d+e x)}{e^4}-\frac {2 d^3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^4}+\frac {d^3 p \log \left (\frac {e \left (\sqrt {b}-\sqrt {-a} x\right )}{\sqrt {-a} d+\sqrt {b} e}\right ) \log (d+e x)}{e^4}+\frac {d^3 p \log \left (-\frac {e \left (\sqrt {b}+\sqrt {-a} x\right )}{\sqrt {-a} d-\sqrt {b} e}\right ) \log (d+e x)}{e^4}-\frac {b d p \log \left (b+a x^2\right )}{2 a e^2}+\frac {d^3 p \text {Li}_2\left (\frac {\sqrt {-a} (d+e x)}{\sqrt {-a} d-\sqrt {b} e}\right )}{e^4}+\frac {d^3 p \text {Li}_2\left (\frac {\sqrt {-a} (d+e x)}{\sqrt {-a} d+\sqrt {b} e}\right )}{e^4}-\frac {2 d^3 p \text {Li}_2\left (1+\frac {e x}{d}\right )}{e^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.44, size = 375, normalized size = 0.89 \[ -\frac {6 d^3 \log (d+e x) \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )-6 d^2 e x \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )+3 d e^2 x^2 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )-2 e^3 x^3 \log \left (c \left (a+\frac {b}{x^2}\right )^p\right )+6 d^3 p \left (-\text {Li}_2\left (\frac {\sqrt {-a} (d+e x)}{\sqrt {-a} d-\sqrt {b} e}\right )-\text {Li}_2\left (\frac {\sqrt {-a} (d+e x)}{\sqrt {-a} d+\sqrt {b} e}\right )-\log (d+e x) \log \left (\frac {e \left (\sqrt {b}-\sqrt {-a} x\right )}{\sqrt {-a} d+\sqrt {b} e}\right )-\log (d+e x) \log \left (\frac {e \left (\sqrt {-a} x+\sqrt {b}\right )}{\sqrt {b} e-\sqrt {-a} d}\right )+2 \text {Li}_2\left (\frac {e x}{d}+1\right )+2 \log \left (-\frac {e x}{d}\right ) \log (d+e x)\right )+\frac {12 \sqrt {b} d^2 e p \tan ^{-1}\left (\frac {\sqrt {b}}{\sqrt {a} x}\right )}{\sqrt {a}}+\frac {3 b d e^2 p \left (\log \left (a+\frac {b}{x^2}\right )+2 \log (x)\right )}{a}-\frac {4 b e^3 p x \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};-\frac {b}{a x^2}\right )}{a}}{6 e^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*Log[c*(a + b/x^2)^p])/(d + e*x),x]

[Out]

-1/6*((12*Sqrt[b]*d^2*e*p*ArcTan[Sqrt[b]/(Sqrt[a]*x)])/Sqrt[a] - (4*b*e^3*p*x*Hypergeometric2F1[-1/2, 1, 1/2,
-(b/(a*x^2))])/a - 6*d^2*e*x*Log[c*(a + b/x^2)^p] + 3*d*e^2*x^2*Log[c*(a + b/x^2)^p] - 2*e^3*x^3*Log[c*(a + b/
x^2)^p] + (3*b*d*e^2*p*(Log[a + b/x^2] + 2*Log[x]))/a + 6*d^3*Log[c*(a + b/x^2)^p]*Log[d + e*x] + 6*d^3*p*(2*L
og[-((e*x)/d)]*Log[d + e*x] - Log[(e*(Sqrt[b] - Sqrt[-a]*x))/(Sqrt[-a]*d + Sqrt[b]*e)]*Log[d + e*x] - Log[(e*(
Sqrt[b] + Sqrt[-a]*x))/(-(Sqrt[-a]*d) + Sqrt[b]*e)]*Log[d + e*x] - PolyLog[2, (Sqrt[-a]*(d + e*x))/(Sqrt[-a]*d
 - Sqrt[b]*e)] - PolyLog[2, (Sqrt[-a]*(d + e*x))/(Sqrt[-a]*d + Sqrt[b]*e)] + 2*PolyLog[2, 1 + (e*x)/d]))/e^4

________________________________________________________________________________________

fricas [F]  time = 0.68, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {x^{3} \log \left (c \left (\frac {a x^{2} + b}{x^{2}}\right )^{p}\right )}{e x + d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(c*(a+b/x^2)^p)/(e*x+d),x, algorithm="fricas")

[Out]

integral(x^3*log(c*((a*x^2 + b)/x^2)^p)/(e*x + d), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(c*(a+b/x^2)^p)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Simp
lification assuming a near 0Simplification assuming d near 0Evaluation time: 0.75Not invertible Error: Bad Arg
ument Value

________________________________________________________________________________________

maple [F]  time = 0.42, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \ln \left (c \left (a +\frac {b}{x^{2}}\right )^{p}\right )}{e x +d}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*ln(c*(a+b/x^2)^p)/(e*x+d),x)

[Out]

int(x^3*ln(c*(a+b/x^2)^p)/(e*x+d),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \log \left ({\left (a + \frac {b}{x^{2}}\right )}^{p} c\right )}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(c*(a+b/x^2)^p)/(e*x+d),x, algorithm="maxima")

[Out]

integrate(x^3*log((a + b/x^2)^p*c)/(e*x + d), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^3\,\ln \left (c\,{\left (a+\frac {b}{x^2}\right )}^p\right )}{d+e\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*log(c*(a + b/x^2)^p))/(d + e*x),x)

[Out]

int((x^3*log(c*(a + b/x^2)^p))/(d + e*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \log {\left (c \left (a + \frac {b}{x^{2}}\right )^{p} \right )}}{d + e x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*ln(c*(a+b/x**2)**p)/(e*x+d),x)

[Out]

Integral(x**3*log(c*(a + b/x**2)**p)/(d + e*x), x)

________________________________________________________________________________________